If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-19/x^-2-72x+4320=0
Domain of the equation: x^!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
-72x-19/x^+4318=0
We multiply all the terms by the denominator
-72x*x^+4318*x^-19=0
We add all the numbers together, and all the variables
4318x-72x*x^-19=0
Wy multiply elements
-72x^2+4318x-19=0
a = -72; b = 4318; c = -19;
Δ = b2-4ac
Δ = 43182-4·(-72)·(-19)
Δ = 18639652
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18639652}=\sqrt{4*4659913}=\sqrt{4}*\sqrt{4659913}=2\sqrt{4659913}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4318)-2\sqrt{4659913}}{2*-72}=\frac{-4318-2\sqrt{4659913}}{-144} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4318)+2\sqrt{4659913}}{2*-72}=\frac{-4318+2\sqrt{4659913}}{-144} $
| -5v=-11 | | x=6-14 | | 3a+3a=10+a+7-7 | | -19/x^2-72x+4320=0 | | 180=9x+17+3x-4+6x-31 | | 4=2(2c-3)-c | | 2a+3-6=1 | | 7c–17=11 | | (6x-14)+(4x-8)+(x+15)=180 | | -30=4(y-7)-6y | | 7(2m+7)=3(9m-1) | | +7-6a=6-7a | | -(4x-6)=2(4-2x) | | 3(v+6)-7v=30 | | -1/2=m-7/8 | | 3x/x+1-2/x-3=1 | | 3(w-7)-8w=9 | | p–4=-8 | | 1+9a=19 | | −6−4x=22 | | 12x^2-20x-5=0 | | -1(-12+5e)=12-5e | | -3(4x+8)=-12 | | (8x+14)+69+49=180 | | 88-t=86 | | 2x^2-16=18 | | 4x-14+140=180 | | 2(4x)+3=22 | | 4x-14+130=180 | | 22x+67=180 | | 3+7m=17 | | 6m+20-4m-8=2m+12 |